Numerical Verification and Comparison of Error of Asymptotic Expansion Solution of the Duffing Equation

نویسندگان

  • Jianping Cai
  • Shuhui Chen
  • Cuihong Yang
  • J. Cai
  • S. Chen
چکیده

A numerical order verification technique is applied to demonstrate that the asymptotic expansions of solutions of the Duffing equation obtained respectively by the Lindstedt-Poincaré(LP) method and the modified Lindstedt-Poincaré(MLP) method are uniformly valid for small parameter values. A numerical comparison of error shows that the MLP method is valid whereas the LP method is invalid for large parameter values. Keywordsnonlinear oscillation, perturbation method, asymptotic expansion solution, numerical verification

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonresonant Excitation of the Forced Duffing Equation

We investigate the hard nonresonant excitation of the forced Duffing equation with a positive damping parameter E. Using the symbolic manipulation system MACSYMA, a computer algebra system. we derive the two term perturbation expansion by the method of multiple time scales. The resulting approximate solution is valid for small values of the coefficient e As the damping parameter e increases, th...

متن کامل

A hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer

The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...

متن کامل

Numerical solution of Voltra algebraic integral equations by Taylor expansion method

Algebraic integral equations is a special category of Volterra integral equations system,  that has many applications in physics and engineering. The principal aim of this paper is to serve the numerical solution of an integral algebraic equation by using the Taylor expansion method. In this method, using the Taylor expansion of the unknown function, the algebraic integral equation system becom...

متن کامل

NUMERICAL APPROACH TO SOLVE SINGULAR INTEGRAL EQUATIONS USING BPFS AND TAYLOR SERIES EXPANSION

In this paper, we give a numerical approach for approximating the solution of second kind Volterra integral equation with Logarithmic kernel using Block Pulse Functions (BPFs) and Taylor series expansion. Also, error analysis shows efficiency and applicability of the presented method. Finally, some numerical examples with exact solution are given.

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008